Math 3 Unit 1 Test Review

- I. Skills throughout the unit
 - A. Graphing linear, quadratic
 - Writing equations of linear, quadratic
 - Average Rate of Change
- II. Absolute Value
 - A. Solving
 - B. Writing as a piecewise function
 - C. Graphing
 - D. Domain and Range

III. Piecewise

- A. Graphing
- B. Writing an equation from a graph
- C. Interpreting a graph
- D. Find f(x) from a piecewise function

Practice:

Practice: $3\chi - 6$ Given the following functions: $f(x) = \frac{1}{2}(x+4)$, g(x) = 3x+2, h(x) = 2(x-5)-6

1. Graph and label the functions on the graph at right. Use different colors

State the domain and range of each function:

Function	Domain	Range
$f(x) = \frac{1}{2}(x+4)$	$(-\infty,\infty)$	$(-\infty,\infty)$
g(x) = 3x + 2	$(-\infty,\infty)$	$(-\infty,\infty)$
h(x) = 2(x - 5) - 6	$(-\infty,\infty)$	$(-\infty,\infty)$

3. Graph the following function:

$$k(x) = \begin{cases} \frac{1}{2}(x+4), & x \le 2\\ 3x - 10, & 2 < x < 5\\ 2(x-5) - 6, & 5 \le x < 10 \end{cases}$$

4. Use the equation or the graph to find the following:

b.
$$k(0) =$$

c.
$$k(1) = \frac{5}{5} (0.5)$$
 d. $k(2) = \frac{3}{5}$
e. $k(3) = \frac{1}{5} (0.5)$ f. $k(4) = \frac{3}{5}$

e.
$$k(3) =$$

f.
$$k(4) = 2$$

g.
$$k(5) = -10$$

h.
$$k(10) = 1$$

- You are buying tee shirts for the math club. The pricing of the shirts is given by the following function: $c(x) = \begin{cases} 15x & \text{if } 1 \le x \le 10 \\ 12x & \text{if } 11 \le x \le 20 \\ 10x & \text{if } 21 \le x < \infty \end{cases}$ (where x is an integer)

- a. If 43 members of the math club order tee shirts, what is x?
 - What is the total cost of the tee shirts? 430 How much will each member pay?
- b. If only 5 members of the club order tee shirts, how much will each member pay? \\ \bigs_15
- c. Which order costs less: 10 shirts or 11 shirts? 11 50 1743
 - If 10 members want to buy shirts, how many shirts should be ordered so that each member gets a shirt and the cost is minimized?
- 6. Write an equation for the following functions; state their domains and ranges:
- Equation: Q

- 7. Write the equation of y = |x 3| in piecewise notation.

§ Fill in the blanks to complete the equation of the following piecewise function:

$$f(x) = \begin{cases} \frac{1}{3} (x+5) - 1 & -5 \le x < -1 \\ -\frac{3}{4} (x+1) + 3, & -1 \le x \le 3 \\ -2, & 3 < x \le 1 \end{cases}$$

9. Given the graph above, find the average rate of change of f(x) on each interval.

Interval	Average Rate of Change	
$-5 \le x \le -3$	1/2	
-1 ≤ x ≤ 3	-3/4	
$4 \le x \le 5$	D	

10. Find the value(s) of x where f(x) = 0.

11. Solve the following absolute value equations/inequalities:

Inequality	Solution	Follow up question:
A. $ x - 3 < 5$	X-3<5 000 (100) (50) (50) (50) (50) (50) (50) (50) (Is x = 8 in the solution set? NO, 8 is not between - and 8, non-indusiv
B. $ x-3 > 5$	X-375 01-(X-375 X>8 -(X-375 X-375 01-(X-375)	Is x = 12 in the solution set? Yes, because 12 is greater than 8
C. $ 7 - 9k = 43$	1-0/= 42 }-(1-0/)=#	Can absolute value ever be equal to a negative? NO, distorce con't
D. $ n-1 -7>-3$	(1-1)-7>-3 dx - (1-1)-7>-3 1-8>-3 1-1-1-2-3 1-1-1-2-3 1-1-1-3 1-1-1-3 1-1-1-3 1-1-1-3 1-1-1-3 1-1-1-3 1-1-1-3 1-1-1-3	Is $x = -6$ in the solution set? VIS SECONDI - 6 15 VISO-LOOP - 3

12. Graph and label the functions on the graph below.

$$f(x) = |x|$$

$$g(x) = |x - 3|$$

$$h(x) = |x - 3| + 5$$

$$j(x) = 2|x + 5| - 7$$

State the domain and range of each function:

State the domain and range of each function.				
Function	Domain	Range		
f(x) = x	$(-\infty\infty)$	[0,0]		
g(x) = x - 3	$(\infty \infty)$	(0,0)		
h(x) = x - 3 + 5	$(-\infty \infty)$	[5,\infty]		
j(x) = 2 x + 5 - 7	(-00,00)	[= M(00)		

Look back over the HW and quizzes and make sure you can do the following before tomorrow.

 $\underline{\hspace{1cm}}$ I can identify the functions that make up a piecewise function and their domains

I can use function notation to represent a piecewise function

____ I can connect representations of a piecewise function to the context of a situation

I can graph a piecewise function given the equation

____ I can identify the average rate of change for an interval and connect it to context

____ I can rewrite an absolute value function as a piecewise function

___ I can graph an absolute value function

____ I can solve an absolute value equation or inequality

____ I can describe the effect of taking the absolute value of a function on the graph of that function