MORE FUNCTIONS, MORE FEATURES

Name

Period

Date

READY

Topic: Reflecting Images

1. Reflect $\triangle ABC$ across the line y = x. Label the new image as $\triangle A'B'C'$. Label the coordinates of *points* A'B'C'. Connect segments AA', BB', and CC'. Describe how these segments are related to each other and to the line y = x.

· The segments are parallel to

· The segments are perpendicular

2. On the graph provided to the right, draw a 5-sided figure in the 4^{th} quadrant. Label the vertices of the pre-image. Include the coordinates of the vertices. Reflect the pre-image across the line y = x. Label the image, including the coordinates of the vertices.

3. A table of values for a four-sided figure is given in the first two columns. Reflect the image across the line y = x, and write the coordinates of the reflected image in the space provided.

A	(-6,2)	A'	(a6
В	(-4,5)	В'	(5-4)
С	(-2,3)	C'	(3-2
D	(-3,-1)	D'	(1-3)

Need help? Visit www.rsgsupport.org

Mathematics Vision Project
Licensed under the Creative Commons Attribution CC BY 4.0
mathematicsvisionproject.org

SECONDARY MATH III // 4.4

MORE FUNCTIONS, MORE FEATURES

SET

Topic: Absolute value and non-linear functions

4. Figure 1 is the graph of a sound wave. The height (or depth) of the graph indicates the magnitude and direction f(x) reaches from the norm or the undisturbed value. In this case that would be the x-axis. When we are only concerned with the distance from the x-axis, we refer to this distance as the **amplitude**. Since distance alone is always positive, **amplitude** can be described as the absolute value of f(x). Use the graph of a sound wave to sketch a graph of the absolute value of the amplitude or y = |f(x)|.

5. Figure 2 is a table of values for $g(x) = (x + 3)^2 - 9$

What values in the table would need to change if the function

were redefined as h(x) = |g(x)|?

6. Graph h(x) = |g(x)|.

figure 2

x	g(x)
-8	16
-7	7
-6	0
-5	-5
4	-8
-3	-9
-2	-8
0	0
1	7
2	16

1			1		•		
759 10 10 10 10 10 10 10 10 10 10 10 10 10	j	100			\parallel		
1	1		11		#	#	
14 C	1	++-	1 6	7	+	+	
#					\pm	\parallel	
#		++	#	#	+	#	#
+			#	+	#	+	#
	$\pm \pm \pm$	$\pm \pm$		廿	廿		

7. Write the piece-wise equation for h(x) = |g(x)|, as defined in question 6. Let the domain be all real numbers in the interval [-8, 2].

 $18,2]. + S(X+3)^2 - Q, X \le -6$ $16X+3)^2 - Q = 0.043)^2 + Q, -6.440$ $16X+3)^2 - Q, X \ge 0$ Need help? Visit www.rsgsupport.org

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

SECONDARY MATH II // 4.4

MORE FUNCTIONS, MORE FEATURES

Topic: Representing exponential functions as tables, equations, and graphs.

8. Create a table from the equation $f(x) = 3^x$

				1	_
x	-2	-1	0	1	<u>a</u> _
у	1/9	/3	1	3	9

9. Create a graph from the equation $f(x) = 2^x$

10. Create an equation from the table:

x	1	2	3	4	5
v	4	16	64	256	1024
,					

11. Create an equation from the graph

12. Create an equation from this situation:

A certain type of bacteria, given a favorable growth medium, doubles in population every hour. Given that there were approximately 10 bacteria to start with, how many bacteria will there be in a day and a half?

Mathematics Vision Project
Licensed under the Creative Commo

mathematicsvision project.org

